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ABSTRACT 

This paper makes two significant contributions to the study of pure equilibria in symmetric zero-sum 

games. First, it introduces a set of new sufficient conditions most notably the concepts of 

interchangeability and weak quasiconcavity that ensure the existence of such equilibria. Second, it 

explores how these new conditions relate to those already established in the literature. In particular, we 

show that weakly quasiconcave games form a broader category that includes both quasiconcave games 

and ordinal potential games. We also establish that exact potential games inherently satisfy the 

interchangeability condition. At the same time, our results indicate that there is no direct logical 

connection between interchangeability and (weak) quasiconcavity, highlighting the independence of these 

two properties. 

Keywords: Saddle Points; Symmetric Two-Player Zero-Sum Games; Pure Strategy Equilibrium; 

Potential Games; Quasiconcave and Weakly Quasiconcave Games; Interchangeability Conditions; 

Game Theoretic Optimization 

INTRODUCTION 

Research on sufficient conditions that guarantee the existence of pure equilibria in zero- sum 

games has progressed steadily since the foundational work of Shapley (1964). Over the years, 

several important conditions have been identified. Notable among them is super modular games, 

as developed by Topkis (1998) and Milgrom and Roberts (1990); potential games, introduced by 

Monderer and Shapley (1996) and later extended by Voorneveld (2000); and quasiconcave 

games, examined in the works of Radzik (1991), Duersch et al. (2012a), and Iimura and 

Watanabe (2016) [1-4]. 

Although several of the known sufficient conditions apply to symmetric zero-sum games, the 

pioneering study by Duersch et al. (2012a) is the only one that explicitly leverages the symmetry 

structure. Their work not only utilizes symmetry but also establishes a series of equivalences 

among the existing conditions. Building on their contribution, this paper advances the literature in 

two major directions. First, we introduce new sufficient conditions, including a relaxed version 

of their quasiconcavity concept. Second, we develop a general framework grounded in the 
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preference relations naturally induced by symmetric zero-sum games. This framework allows us 

to systematically investigate the connections between previously known conditions and the 

newly proposed ones. In particular, we provide a complete characterization of all pairwise 

relationships between the old and new conditions, as summarized in Tables 1, 2, and 3. The idea 

of quasiconcavity often interpreted as single-peakedness was originally introduced in the setting 

of zero-sum games by Radzik (1991) and later generalized by Duersch et al. (2012a). Their work 

demonstrated that symmetric zero-sum games satisfying quasiconcavity admit a pure 

equilibrium, extending Radzik’s earlier result for two-player zero- sum games with quasiconcave 

columns and quasiconvex rows. Moreover, Duersch et al. (2012a) established that exact potential 

games (Monderer and Shapley 1996) and super modular games (Topkis 1998) are equivalent when 

viewed through the lens of symmetric zero-sum game theory [5]. 

This study offers two central contributions. The first, presented in Theorem 1, introduces a 

new sufficient condition termed interchangeability. This notion is inspired by classical axioms 

on preference relations developed by Suppes and Zinnes (1963) and Fishburn (1986). We show 

that this condition ensures the existence of pure equilibria in symmetric zero-sum games. 

Although exact potential games are found to satisfy the interchangeability requirement, we 

demonstrate that this condition has no direct logical connection to quasiconcave games or to the 

class of “transitive” games defined in Sect. 3.2. Additionally, we establish in Proposition 2 that 

ordinal potential games (Monderer and Shapley 1996) generate transitive preference structures. 

By contrast, quasiconcave games do not necessarily produce transitive preferences, and 

transitivity itself does not imply quasiconcavity [6]. 

Our second major contribution is encapsulated in Theorem 2, which proves that games 

satisfying weak quasiconcavity admit pure equilibria. We further show that this class of games 

strictly extends the families of quasiconcave games and ordinal potential games, as stated in 

Proposition 1. Beyond theoretical interest, these results also apply to symmetric non-zero-sum 

games such as models of oligopoly and public-goods provision through the lens of relative payoff 

games. Schaffer (1988, 1989) introduced the notion of evolutionary stable strategies in finite 

populations and demonstrated that, in symmetric games, such strategies correspond to optimal 

strategies in the associated zero-sum relative payoff game. Subsequent studies, including Ania 

(2008) and Hehenkamp et al. (2010), provide further applications of this framework. The paper 

is organized as follows. Section 2 outlines the model and basic definitions. Section 3 reviews 

existing sufficient conditions in Sect. 3.1 and introduces the new conditions in Sect. 3.2. Section 

4 then examines the relationships among all conditions discussed in the paper. 

The setup Let G = (X, v) denote a symmetric two-player zero-sum game, where both players 

have the same finite set of pure actions X, and v ∶ X × X → ℝ is the payoff function of Player 1. 

When Player 1 chooses x ∈ X and Player 2 choose y ∈ X, Player 1 and Player 2 receive v (x, y) 

= −v (y, x) and −v (x, y) = v (y, x), respectively. Therefore, the payoff matrix of a player is skew-

symmetric, and the players’ payoffs on the main diagonal are zero [7]. 

https://bharatpublication.com/ijtse/


International Journal of Technology, Science and Engineering                     ISSN: 2457-1016  

  

Vol. 1, Issue  II, Jan-Mar, 2018            https://bharatpublication.com/ijtse/ 

 

 
 

23 

 

BHARAT PUBLICATION 

Definition 1 Pure equilibrium In a symmetric two-player zero-sum game (X, v), a pair of pure 

actions (x∗, y∗) ∈ X × X is a pure equilibrium if v(x∗, y∗) = maxx∈X v (x, y∗ ) = minx∈Y v (x∗, 

y). 

A pure equilibrium (x∗, y∗) is called symmetric if x∗ = y∗ . Note that in a symmetric two-player 

zero-sum game, a pure equilibrium exists if and only if a symmetric pure equilibrium exists. In 

particular, if (x∗, y∗) is an equilibrium, then so are (x∗, y∗) , (x∗, x∗) , and (y∗, y∗) . Here, x∗ and 

y∗ are called optimal strategies, v(x∗, y∗) is referred to as the value, and the pair (v(x∗, y∗), −v(x∗, 

y∗)) is known as a saddle point. In symmetric two-player zero- sum games, the value is zero, 

since players have identical strategic opportunities and their payoffs add up to zero [8]. 

Let D = (X, ⪰) denote a decision problem, where X is a finite set of alternatives, and the relation 

⪰ ⊆ X × X represents the preferences of the decision maker on X. These preferences are assumed 

to be complete, that is, for any pair (x, y) in X × X, either x ⪰ y or y ⪰ x holds. 

 

Definition 2 Maximal element: In a decision problem (X, ⪰), an alternative x∗∈ X is a 

maximal element if x∗⪰ y for all y ∈ X. 

Given that the preference relation in a decision problem is assumed to be complete but not 

necessarily transitive, it is generally not possible to represent preferences by a one-variable order-

preserving utility function. For such decision problems, a more viable approach for functional 

representation of the preferences is to use a two-variable function.2 A function u ∶ X × X → ℝ 

represents the relation ⪰ if for all x, y ∈ X, u (x, y) > 0 if and only if x ≻ y. The function u (x, 

y) can be interpreted as quantifying the intensity of preference for x over y. If this intensity is 

greater than zero, then x is preferred to y. By using the two-variable functional representation, 

any symmetric two-player zero-sum game G = (X, v) uniquely induces an equivalent decision 

problem DG = (X, ⪰), where the payoff function v represents the preference relation ⪰. 

Conversely, for every decision problem D = (X, ⪰), there are (uncountably) many functions v 

that represents ⪰. We denote by GD the class of symmetric two-player zero-sum games, such 

that for each game G ∈ GD, D is its equivalent decision problem. 

We are now ready to present a useful lemma. 

Lemma 1 (i) If x∗ is a maximum element in decision problem D, then (x∗, x∗) is a pure 

equilibrium of every symmetric two-player zero-sum game G ∈ GD . (ii) If (x∗, x∗) is a pure 

equilibrium of a symmetric two-player zero-sum game G, then x∗ is a maximal element in its 

equivalent decision problem DG. 

Proof (i) Let x∗ be a maximum element of the decision problem D = (X, ⪰). Given that ⪰ is 

complete, we have x∗ ⪰ y for all y ∈ X. For any function v that represents the preference relation 

⪰, it follows that v (x∗, y) ≥ 0 for all y ∈ X. Thus, for any game G ∈ GD where D is its equivalent 

decision problem, the pure action x∗ guaran-tees a payoff of 0. Therefore, x∗ is an optimal strategy 
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for all games in GD. By symmetry, the pair (x∗, x∗) is a pure equilibrium of any game in GD. (ii) 

Let (x∗, x∗) be a pure equilibrium of the game G = (X, v). Then, the value of the game is 0, 

meaning that the pure action x∗ guarantees the payoff of 0: v (x∗, y) ≥ 0 for all y ∈ X. For its 

equivalent decision problem DG, this implies that x∗ ⪰ y for all y ∈ X. Thus, x∗ is a maximal 

element of DG [8-10]. 

Sufficient conditions: In this section, we provide the definitions of some well-known properties 

that guarantee the existence of a pure equilibrium in symmetric two-player zero-sum games. 

Subsequently, we use Lemma 1 to introduce novel sufficiency conditions for the existence of 

pure equilibria. 

WELL‑KNOWN SUFFICIENT CONDITIONS 

We begin by introducing the concept of potential games, initially developed by Maunderer and 

Shapley (1996). We proceed to outline two distinct variations of this seminal concept. 

Definition 3 Potentials: Let (X, v) be a symmetric two-player zero-sum game. 

Then 

1. a function P ∶ X × X → ℝ is an exact potential for the game (X, v), if for every y 

∈ X and for every x, x′ ∈ X 

v (x, y) − v (x′, y) = P (x, y) − P (x′, y) = P (y, x) − P (y, x′). 

2. a function P ∶ X × X → ℝ is an ordinal potential for the game (X, v), if for 

every y ∈ X and for every x, x′∈ X, 

v (x, y) − v (x′, y) > 0 ⟺ P (x, y) − P (x′, y) > 0 ⟺ P (y, x) − P (y, x′ ) > 0. 

 

A game (X, v) is referred to as an exact potential game or an ordinal potential game when 

it admits an exact or ordinal potential function, respectively. Monderer and Shapley (1996) 

established that both types of potential games always admit at least one pure-strategy 

equilibrium. Although several broader categories of potential games have been introduced in the 

literature such as generalized ordinal potential games (Monderer & Shapley, 1996), best- 

response potential games (Voorneveld, 2000), and pseudo-potential games (Dubey et al., 2006; 

see also Schipper, 2004) these variants are not the focus of the present discussion. These extended 

classes typically impose structural conditions on particular types of actions (for example, best 

responses or strict best responses) rather than on the full action set. As a result, the associated 

decision problems for games satisfying these weaker conditions may fail to meet standard 

preference requirements, such as transitivity or acyclicity. An illustration of this issue is provided 

in Example 9 of Duersch et al. (2012a, p. 557) [10-14]. 

Duersch et al. (2012b) introduced the concept of a generalized rock–paper–scissors 

(gRPS) game and demonstrated that this structure provides both a necessary and sufficient 

condition for the “imitate-if-better” behavioural rule to be vulnerable to a money-pump scenario. 

Furthermore, they showed that any symmetric two-player zero-sum game that does not fall into 
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the gRPS category must admit at least one pure-strategy equilibrium. 

Definition 4 A symmetric two-player zero-sum game (X, v)is said to be a generalized rock– 

paper–scissors (gRPS) game 

If there exists a pair ( X̄  , vˉ ) with X̄ ⊆ X and vˉ (x, y) = v(x, y)for every x, y ∈ X̄ , such that the 

following condition holds: for every action y ∈ X̄ , there exists some action x ∈ X̄ for which v(x, 

y) > 0. In other words, within the restricted action set X̄ , each action can be strictly beaten by at 

least one other action. 

Next, we present the notion of quasiconcave games, a concept originally introduced by Radzik 

(1991). This class of games may be viewed as a discrete analogue of the quasiconcavity property 

typically defined for continuous payoff functions. 

Definition 5 A symmetric two-player zero-sum game (X, v)is said to be quasiconcave if there 

exists a total order <on the action set X such that, for any actions x′, x, x′′, y ∈ X with 

x′ < x < x′′, 

the payoff function satisfies 

v(x, y) ≥ min { v(x′, y), v(x′′, y)}. 

This condition ensures that, with respect to the chosen ordering, the payoff to an intermediate 

action x is never lower than the minimum payoff of the two extreme actions x′ and x′′, thereby 

capturing a discrete form of quasiconcavity [14-17]. 

New Sufficient Conditions: Building on the equivalence between symmetric two-player zero-

sum games and decision problems established in Lemma 1, we translate central concepts from 

decision theory into the game-theoretic setting. In particular, we examine fundamental properties 

of preference relations most notably transitivity and acyclicity and use these properties to 

formulate new sufficient conditions that guarantee the existence of pure-strategy equilibria in 

symmetric two-player zero-sum games. 

Definition 6 Transitive Games: Consider a decision problem D = (X, ⪰). The preference 

relation ⪰on the action set X is said to be transitive if, for all x, y, z ∈ X, 

x ⪰ y and y ⪰ z ⇒ x ⪰ z. 

A game G = (X, v) ∈ 𝒢D is called transitive if, in its corresponding decision-problem 

representation, the induced preference relation ⪰satisfies this transitivity property. 
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Definition 7 A cyclic Games: Let D = (X, ⪰) be a decision problem. The preference relation 

⪰on the set X is said to be acyclic if it contains no preference cycle; that is, for every finite subset 

{x1, x2, … , xn} ⊆ X, it is not the case that. 

Lemma 2 Let (X, v) be a symmetric two-player zero-sum game. If the game (X, v) is acyclic, 

then it necessarily admits at least one pure-strategy equilibrium. 

Proof. If the game (X, v) is acyclic, then the corresponding preference relation ⪰ in its equivalent 

decision-problem formulation is also acyclic. Acyclicity ensures that the set X contains at least 

one maximal element, say x∗ ∈ X, with respect to ⪰. By Lemma 1, this maximal element directly 

induces a pure-strategy equilibrium in the original game. Therefore, the action profile (x∗, x∗) 

constitutes a pure equilibrium of the symmetric two-player zero-sum game [17-20]. 

Since transitivity implies acyclicity, we obtain the following corollary 

Corollary 1 Let (X, v) be a symmetric two-player zero-sum game. If the game (X, v) is 

transitive, then it necessarily admits at least one pure-strategy equilibrium. 

We now introduce a definition inspired by Axiom C.3 from Fishburn (1986), which concerns 

structural properties of preference relations. In Fishburn’s original framework, this axiom— 

together with several complementary conditions was employed to ensure that a particular relation 

on the set X forms a weak order. Since our purpose here is to derive a sufficient condition for 

the existence of pure equilibria in symmetric two-player zero-sum games, we adapt this axiom 

to a form that is appropriate for our setting. The corresponding version, tailored to our game-

theoretic framework, is presented below [20-23]. 

Definition 8 Interchangeability Condition: Consider a symmetric two-player zero-sum game 

(X, v). The game is said to satisfy the interchangeability condition, or to be interchangeable, if 

the following holds: for all x, y, x′, y′ ∈ X with x ≠ y and x′ ≠ y′, 

V (x, y) > v (x′, y′) ⇒ v (x, x′) ≥ v (y, y′). 

In other words, whenever one action pair (x, y) yields a strictly higher payoff than another pair 

(x′, y′), the payoff comparison between the corresponding “interchanged” pairs (x, x′) and (y, 

y′) must preserve this ordering. This condition captures a structured consistency in how payoffs 

respond to the swapping of actions. 

Lemma 3 Let (X, v) be a symmetric two-player zero-sum game. If the game (X, v) 

satisfies the interchangeability condition, then the game (X, v) is acyclic. 

Proof. Let (X, ⪰) denote the decision problem associated with the game (X, v). If the set X 

contains only one or two elements, the statement follows immediately. Hence, assume that ∣ X ∣ 

≥ 3. Our goal is to show that the induced preference relation ⪰ is acyclic. Lemma 2 will then 
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ensure the existence of a maximal element, which corresponds to a pure-strategy equilibrium of 

(X, v). 

Suppose, for the sake of contradiction, that ⪰contains a strict preference cycle. That is, there 

exists a sequence of elements 

ϰ1 ≻ ϰ1 ≻ ⋯ ≻ xϰn−1 ≻ ϰn and ϰn ≻ ϰ1. 

By the definition of the interchangeability condition, for any index i ∈ {1,2, … , n − 3}, the 

relations   ϰi ≻ ϰi+1 ≻ ϰi+2 ≻ ϰi+3   imply xi ≻ xi+3. This follows from the fact that 

v(xi, xi+1) ≥ v(xi+3, xi+2) 

implies 

v (ϰi, ϰi+3) ≥ v (ϰi+1, ϰi+2) > 0, 

hence xi ≻ xi+3. Applying this step repeatedly yields x1 ≻ x4. Furthermore, since 

x4 ≻ x5 ≻ x6, 

the same reasoning gives x1 ≻ x6. Continuing in this manner, we obtain 

ϰ1 ≻ ϰk for every even k ≤ n. 

If nis even, then this includes x1 ≻ xn. But since the cycle also contains xn ≻ x1, we obtain 

x1 ≻ xn ≻ x1 

which is impossible. 

If n is odd, the argument gives x1 ≻ xn−1, xn−1 ≻ xn ≻ x1 

since n − 1 is even. Combined with we obtain the shorter cycle 

x1 ≻ xn−1 ≻ xn ≻ x1. 

Repeating the interchangeability reasoning on this 3-cycle eventually yields x1 ≻ x1, which is a 

contradiction. 

Since any assumed cycle leads to a logical contradiction, the preference relation ⪰ must be 

acyclic. By Lemma 2, the game therefore has a maximal element, which corresponds to a pure- 

strategy equilibrium of (X, v) [25-30]. 
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Theorem 1 Let (X, v) be a symmetric two-player zero-sum game. If (X, v) satisfies the 

interchangeability condition, then the game admits at least one pure-strategy equilibrium. 

Proof. By Lemma 3, if the game G = (X, v) satisfies the interchangeability condition, then the 

induced preference relation ⪰ in the corresponding decision problem DG = (X, ⪰) is acyclic. 

Applying Lemma 2, it follows that the game G = (X, v) possesses at least one pure-strategy 

equilibrium. While the notion of quasiconcavity introduced by Duersch et al. (2012a) leverages the 

symmetry of the game, it does not fully utilize the zero-sum property of the payoff structure. To 

address this limitation and more effectively exploit the zero-sum nature, we now introduce the 

concept of weak quasiconcavity. 

Definition 9 Weakly Quasiconcave Games: A symmetric two-player zero-sum game (X, v) is 

said to be weakly quasiconcave if there exists a total order <on X such that, for every 

x, x′, x′′, y ∈ X with 

x′ < x < x′′, 

the following condition holds: 

sgn (v(x, y)) ≥ min {sgn(v(x′, y)), sgn (v(x′′, y))}, 

where sgn (⋅) denotes the sign function. 

As we will show, weak quasiconcavity not only generalizes the notion of quasiconcavity (see 

Proposition 3) but also provides a sufficient condition for the existence of pure-strategy equilibria 

(Theorem 2). To establish these results, we first present a lemma that connects weakly 

quasiconcave games with the acyclicity of their associated decision problems. This link forms a 

crucial step in demonstrating that weak quasiconcavity guarantees the existence of a pure 

equilibrium [27]. 

 

Lemma 4 Let (X, v) be a symmetric two-player zero-sum game. If the game (X, v) is weakly 

quasiconcave, then its associated preference relation in the equivalent decision problem is 

acyclic. Consequently, the game (X, v) itself is acyclic. 

Proof. First, observe that the games (X, v) and (X,sgn(v)) share the same equivalent decision 

problem (X, ⪰), since for any x, y ∈ X, 

v(x, y) > 0 if and only if sgn(v(x, y)) > 0. 

 

Now, suppose, for the sake of contradiction, that ⪰ is not acyclic. Cyclicity of ⪰ implies the 

existence of a finite subset X̄ ⊆ X that does not admit a maximal element. By Lemma 1, the 

corresponding symmetric two-player zero-sum game ( X̄  ,sgn(vˉ )) therefore has no pure-strategy 

equilibrium. 

According to Theorem 7 in Duersch et al. (2012a), this absence of a pure equilibrium implies 

that the game ( X̄  ,sgn(vˉ )) is not quasiconcave. Consequently, it is impossible to define a total 
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order on X̄ that renders the game quasiconcave. Extending this argument, it follows that no total 

order on the larger set X can make (X,sgn(v))quasiconcave. 

Therefore, if (X, v) is weakly quasiconcave, its equivalent decision problem must be acyclic. 

This completes the proof [28]. 

Theorem 2 Let (X, v) be a symmetric two-player zero-sum game. If (X, v) is weakly 

quasiconcave, then the game admits at least one pure-strategy equilibrium. 

Proof. By Lemma 4, if the game G = (X, v) is weakly quasiconcave, then the associated 

preference relation ⪰ in its equivalent decision problem DG = (X, ⪰) is acyclic. Applying Lemma 

2, acyclicity ensures the existence of a maximal element, which directly corresponds to a pure-

strategy equilibrium in the original game G. 

RELATIONS BETWEEN SUFFICIENT CONDITIONS 

In this section, we first examine the relationships among the well-established sufficient 

conditions for the existence of pure equilibria in symmetric two-player zero-sum games. Next, 

we explore the interconnections between the newly introduced conditions, such as 

interchangeability and weak quasiconcavity. Finally, we present results that formally establish 

links between the classical and new conditions, highlighting how the novel conditions extend or 

refine existing frameworks. 

Concluding Remarks: This study makes several contributions to the theory of symmetric zero-

sum games by investigating sufficient conditions for the existence of pure-strategy equilibria. 

First, we introduced two new sufficient conditions: interchangeability and a weakened 

form of quasiconcavity, extending the concept originally proposed by Duersch et al. (2012a). 

Second, we analyzed the relationships between classical and newly introduced conditions, 

employing a framework grounded in the preference relations naturally induced by symmetric 

zero-sum games. 

For future research, it would be worthwhile to explore whether the framework and conditions 

developed here can be generalized to broader classes of games, including asymmetric zero-sum 

games and symmetric non-zero-sum games, potentially providing further insights into the 

existence and structure of equilibria in more complex strategic settings. 
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