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ABSTRACT

This paper makes two significant contributions to the study of pure equilibria in symmetric zero-sum
games. First, it introduces a set of new sufficient conditions most notably the concepts of
interchangeability and weak quasiconcavity that ensure the existence of such equilibria. Second, it
explores how these new conditions relate to those already established in the literature. In particular, we
show that weakly quasiconcave games form a broader category that includes both quasiconcave games
and ordinal potential games. We also establish that exact potential games inherently satisfy the
interchangeability condition. At the same time, our results indicate that there is no direct logical
connection between interchangeability and (weak) quasiconcavity, highlighting the independence of these
two properties.
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INTRODUCTION

Research on sufficient conditions that guarantee the existence of pure equilibria in zero- sum
games has progressed steadily since the foundational work of Shapley (1964). Over the years,
several important conditions have been identified. Notable among them is super modular games,
as developed by Topkis (1998) and Milgrom and Roberts (1990); potential games, introduced by
Monderer and Shapley (1996) and later extended by Voorneveld (2000); and quasiconcave
games, examined in the works of Radzik (1991), Duersch et al. (2012a), and limura and
Watanabe (2016) [1-4].

Although several of the known sufficient conditions apply to symmetric zero-sum games, the
pioneering study by Duersch et al. (2012a) is the only one that explicitly leverages the symmetry
structure. Their work not only utilizes symmetry but also establishes a series of equivalences
among the existing conditions. Building on their contribution, this paper advances the literature in
two major directions. First, we introduce new sufficient conditions, including a relaxed version
of their quasiconcavity concept. Second, we develop a general framework grounded in the
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preference relations naturally induced by symmetric zero-sum games. This framework allows us
to systematically investigate the connections between previously known conditions and the
newly proposed ones. In particular, we provide a complete characterization of all pairwise
relationships between the old and new conditions, as summarized in Tables 1, 2, and 3. The idea
of quasiconcavity often interpreted as single-peakedness was originally introduced in the setting
of zero-sum games by Radzik (1991) and later generalized by Duersch et al. (2012a). Their work
demonstrated that symmetric zero-sum games satisfying quasiconcavity admit a pure
equilibrium, extending Radzik’s earlier result for two-player zero- sum games with quasiconcave
columns and quasiconvex rows. Moreover, Duersch et al. (2012a) established that exact potential
games (Monderer and Shapley 1996) and super modular games (Topkis 1998) are equivalent when
viewed through the lens of symmetric zero-sum game theory [5].

This study offers two central contributions. The first, presented in Theorem 1, introduces a
new sufficient condition termed interchangeability. This notion is inspired by classical axioms
on preference relations developed by Suppes and Zinnes (1963) and Fishburn (1986). We show
that this condition ensures the existence of pure equilibria in symmetric zero-sum games.
Although exact potential games are found to satisfy the interchangeability requirement, we
demonstrate that this condition has no direct logical connection to quasiconcave games or to the
class of “transitive” games defined in Sect. 3.2. Additionally, we establish in Proposition 2 that
ordinal potential games (Monderer and Shapley 1996) generate transitive preference structures.
By contrast, quasiconcave games do not necessarily produce transitive preferences, and
transitivity itself does not imply quasiconcavity [6].

Our second major contribution is encapsulated in Theorem 2, which proves that games
satisfying weak quasiconcavity admit pure equilibria. We further show that this class of games
strictly extends the families of quasiconcave games and ordinal potential games, as stated in
Proposition 1. Beyond theoretical interest, these results also apply to symmetric non-zero-sum
games such as models of oligopoly and public-goods provision through the lens of relative payoff
games. Schaffer (1988, 1989) introduced the notion of evolutionary stable strategies in finite
populations and demonstrated that, in symmetric games, such strategies correspond to optimal
strategies in the associated zero-sum relative payoff game. Subsequent studies, including Ania
(2008) and Hehenkamp et al. (2010), provide further applications of this framework. The paper
is organized as follows. Section 2 outlines the model and basic definitions. Section 3 reviews
existing sufficient conditions in Sect. 3.1 and introduces the new conditions in Sect. 3.2. Section
4 then examines the relationships among all conditions discussed in the paper.

The setup Let G = (X, v) denote a symmetric two-player zero-sum game, where both players
have the same finite set of pure actions X, and v : X x X — R is the payoft function of Player 1.
When Player 1 chooses x € X and Player 2 choose y € X, Player 1 and Player 2 receive v (X, y)
=-v (y, x) and —v (x,y) =V (y, X), respectively. Therefore, the payoff matrix of a player is skew-
symmetric, and the players’ payoffs on the main diagonal are zero [7].
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Definition 1 Pure equilibrium In a symmetric two-player zero-sum game (X, v), a pair of pure
actions (x*, y*) € X x X is a pure equilibrium if v(x*, y*) = maxxex v (X, y* ) = mingey v (X*,
y)-

A pure equilibrium (x*, y*) is called symmetric if x* =y* . Note that in a symmetric two-player
zero-sum game, a pure equilibrium exists if and only if a symmetric pure equilibrium exists. In
particular, if (x*, y*) is an equilibrium, then so are (x*, y*) , (x*,x*) , and (y*, y*) . Here, x* and
y* are called optimal strategies, v(x*, y*) is referred to as the value, and the pair (v(x*, y*), —v(Xx*,
y*)) is known as a saddle point. In symmetric two-player zero- sum games, the value is zero,
since players have identical strategic opportunities and their payoffs add up to zero [8].

Let D = (X, >) denote a decision problem, where X is a finite set of alternatives, and the relation
> C X x X represents the preferences of the decision maker on X. These preferences are assumed
to be complete, that is, for any pair (X, y) in X x X, either x > y or y > x holds.

Definition 2 Maximal element: In a decision problem (X, >), an alternative x*€ X is a
maximal element if x*> y forall y € X.

Given that the preference relation in a decision problem is assumed to be complete but not
necessarily transitive, it is generally not possible to represent preferences by a one-variable order-
preserving utility function. For such decision problems, a more viable approach for functional
representation of the preferences is to use a two-variable function.2 A functionu: X x X - R
represents the relation > if for all x, y € X, u (x, y) > 0 if and only if x > y. The function u (x,
y) can be interpreted as quantifying the intensity of preference for x over y. If this intensity is
greater than zero, then x is preferred to y. By using the two-variable functional representation,
any symmetric two-player zero-sum game G = (X, v) uniquely induces an equivalent decision
problem Dg = (X, >), where the payoff function v represents the preference relation >.

Conversely, for every decision problem D = (X, >), there are (uncountably) many functions v
that represents >. We denote by Gp the class of symmetric two-player zero-sum games, such
that for each game G € Gp, D is its equivalent decision problem.

We are now ready to present a useful lemma.

Lemma 1 (i) If x* is a maximum element in decision problem D, then (x*, x*) is a pure
equilibrium of every symmetric two-player zero-sum game G € Gp . (i) If (x*, x*) is a pure
equilibrium of a symmetric two-player zero-sum game G, then x* is a maximal element in its
equivalent decision problem Dg.

Proof (i) Let x* be a maximum element of the decision problem D = (X, >). Given that > is
complete, we have x* > y forall y € X. For any function v that represents the preference relation

>, it follows that v (x*, y) >0 for all y € X. Thus, for any game G € Gp where D is its equivalent
decision problem, the pure action x* guaran-tees a payoff of 0. Therefore, x* is an optimal strategy
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for all games in Gp. By symmetry, the pair (x*, x*) is a pure equilibrium of any game in Gp. (ii)
Let (x*, x*) be a pure equilibrium of the game G = (X, v). Then, the value of the game is 0,
meaning that the pure action x* guarantees the payoff of 0: v (x*, y) > 0 for all y € X. For its
equivalent decision problem Dg, this implies that x* > y for all y € X. Thus, x* is a maximal
element of Dg [8-10].

Sufficient conditions: In this section, we provide the definitions of some well-known properties
that guarantee the existence of a pure equilibrium in symmetric two-player zero-sum games.
Subsequently, we use Lemma 1 to introduce novel sufficiency conditions for the existence of
pure equilibria.

WELL-KNOWN SUFFICIENT CONDITIONS

We begin by introducing the concept of potential games, initially developed by Maunderer and
Shapley (1996). We proceed to outline two distinct variations of this seminal concept.

Definition 3 Potentials: Let (X, v) be a symmetric two-player zero-sum game.
Then

1. afunction P: X x X — R is an exact potential for the game (X, v), if for every y
€ X and for every x, x € X

v (Xs Y) -V (va Y) =P (X: Y) —-P (X’: Y) =P (ya X) —-P (ya X’)-

2. afunction P : X x X — R is an ordinal potential for the game (X, v), if for
every y € X and for every x, X € X,
VEY) -V, ) >0 P(x,y) - P((x,y) >0 P(y,x) ~P(y,x ) >0.

A game (X, v) is referred to as an exact potential game or an ordinal potential game when
it admits an exact or ordinal potential function, respectively. Monderer and Shapley (1996)
established that both types of potential games always admit at least one pure-strategy
equilibrium. Although several broader categories of potential games have been introduced in the
literature such as generalized ordinal potential games (Monderer & Shapley, 1996), best-
response potential games (Voorneveld, 2000), and pseudo-potential games (Dubey et al., 2006;
see also Schipper, 2004) these variants are not the focus of the present discussion. These extended
classes typically impose structural conditions on particular types of actions (for example, best
responses or strict best responses) rather than on the full action set. As a result, the associated
decision problems for games satisfying these weaker conditions may fail to meet standard
preference requirements, such as transitivity or acyclicity. An illustration of this issue is provided
in Example 9 of Duersch et al. (2012a, p. 557) [10-14].

Duersch et al. (2012b) introduced the concept of a generalized rock—paper—scissors
(gRPS) game and demonstrated that this structure provides both a necessary and sufficient
condition for the “imitate-if-better”” behavioural rule to be vulnerable to a money-pump scenario.
Furthermore, they showed that any symmetric two-player zero-sum game that does not fall into

24

BHARAT PUBLICATION


https://bharatpublication.com/ijtse/

International Journal of Technology, Science and Engineering ISSN: 2457-1016
Vol. 1, Issue II, Jan-Mar, 2018 https://bharatpublication.com/ijtse/
the gRPS category must admit at least one pure-strategy equilibrium.

Definition 4 A symmetric two-player zero-sum game (X, v)is said to be a generalized rock—
paper-scissors (gRPS) game

If there exists a pair (X , v_) with X € X and v™ (x, y) = v(x, y)for every x, y € X, such that the
following condition holds: for every action y € X , there exists some action x € X for which v(x,

y) > 0. In other words, within the restricted action set X , each action can be strictly beaten by at
least one other action.

Next, we present the notion of quasiconcave games, a concept originally introduced by Radzik
(1991). This class of games may be viewed as a discrete analogue of the quasiconcavity property
typically defined for continuous payoff functions.

Definition 5 A symmetric two-player zero-sum game (X, v)is said to be quasiconcave if there
exists a total order <on the action set X such that, for any actions x, x, X, y € X with

X <x< X”,
the payoff function satisfies
v(x,y) = min { v(x,y), v(X',y)}.

This condition ensures that, with respect to the chosen ordering, the payoff to an intermediate
action x is never lower than the minimum payoff of the two extreme actions x and x’, thereby
capturing a discrete form of quasiconcavity [14-17].

New Sufficient Conditions: Building on the equivalence between symmetric two-player zero-
sum games and decision problems established in Lemma 1, we translate central concepts from
decision theory into the game-theoretic setting. In particular, we examine fundamental properties
of preference relations most notably transitivity and acyclicity and use these properties to
formulate new sufficient conditions that guarantee the existence of pure-strategy equilibria in
symmetric two-player zero-sum games.

Definition 6 Transitive Games: Consider a decision problem D = (X, >). The preference
relation >on the action set X is said to be transitive if, for all x,y, z € X,

x>yandy>z=>x>z

A game G = (X, v) € Gp is called transitive if, in its corresponding decision-problem
representation, the induced preference relation >satisfies this transitivity property.
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Definition 7 A cyclic Games: Let D = (X, >) be a decision problem. The preference relation

>on the set X is said to be acyclic if it contains no preference cycle; that is, for every finite subset
{x1, X2, ... , Xn} € X, itis not the case that.

Lemma 2 Let (X, v) be a symmetric two-player zero-sum game. If the game (X, v) is acyeclic,
then it necessarily admits at least one pure-strategy equilibrium.

Proof. If the game (X, v) is acyclic, then the corresponding preference relation > in its equivalent
decision-problem formulation is also acyclic. Acyclicity ensures that the set X contains at least
one maximal element, say x* € X, with respect to >. By Lemma 1, this maximal element directly
induces a pure-strategy equilibrium in the original game. Therefore, the action profile (x*, x*)
constitutes a pure equilibrium of the symmetric two-player zero-sum game [17-20].

Since transitivity implies acyclicity, we obtain the following corollary

Corollary 1 Let (X,v) be a symmetric two-player zero-sum game. If the game (X,v) is
transitive, then it necessarily admits at least one pure-strategy equilibrium.

We now introduce a definition inspired by Axiom C.3 from Fishburn (1986), which concerns
structural properties of preference relations. In Fishburn’s original framework, this axiom—
together with several complementary conditions was employed to ensure that a particular relation
on the set X forms a weak order. Since our purpose here is to derive a sufficient condition for
the existence of pure equilibria in symmetric two-player zero-sum games, we adapt this axiom
to a form that is appropriate for our setting. The corresponding version, tailored to our game-
theoretic framework, is presented below [20-23].

Definition 8 Interchangeability Condition: Consider a symmetric two-player zero-sum game
(X, v). The game is said to satisfy the interchangeability condition, or to be interchangeable, if
the following holds: for all x, y,x,y € X withx # y andx' # y,

VEy)>v X, y)=vEx)2v(y,y)

In other words, whenever one action pair (x, y) yields a strictly higher payoff than another pair
(x,y), the payoff comparison between the corresponding “interchanged” pairs (x,x) and (y,
y) must preserve this ordering. This condition captures a structured consistency in how payoffs
respond to the swapping of actions.

Lemma 3 Let (X, v) be a symmetric two-player zero-sum game. If the game (X, v)
satisfies the interchangeability condition, then the game (X, v) is acyclic.

Proof. Let (X, >) denote the decision problem associated with the game (X, v). If the set X
contains only one or two elements, the statement follows immediately. Hence, assume that | X |
> 3. Our goal is to show that the induced preference relation > is acyclic. Lemma 2 will then
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ensure the existence of a maximal element, which corresponds to a pure-strategy equilibrium of
(X, v).

Suppose, for the sake of contradiction, that >contains a strict preference cycle. That is, there
exists a sequence of elements

NI > ML >0 > XUn-1 > Hn and ®n > A

By the definition of the interchangeability condition, for any index i € {1,2, ... ,n — 3}, the
relations i > Hi+1 > Kix2 > w3 imply Xi > Xi+3. This follows from the fact that

V(Xi, Xi+1) > V(Xi+3, Xi+2)

implies

v (%i, ®i3) >V (Rir1, Rit2) > 0,
hence x; > xi+3. Applying this step repeatedly yields x1 > x4. Furthermore, since

X4 > X5 > Xo,
the same reasoning gives X; > X¢. Continuing in this manner, we obtain
x1 > uk for every even k <n.
If nis even, then this includes x; > x,. But since the cycle also contains x, > x1, we obtain
X1 > Xn > X|

which is impossible.
If n is odd, the argument gives X1 > Xn-1, Xp—1 > X, > X
since n — 1 is even. Combined with we obtain the shorter cycle
X1 > Xn-1 > Xn > XI.

Repeating the interchangeability reasoning on this 3-cycle eventually yields x1 > xi, which is a
contradiction.

Since any assumed cycle leads to a logical contradiction, the preference relation > must be
acyclic. By Lemma 2, the game therefore has a maximal element, which corresponds to a pure-
strategy equilibrium of (X, v) [25-30].
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Theorem 1 Let (X,v) be a symmetric two-player zero-sum game. If (X, v) satisfies the
interchangeability condition, then the game admits at least one pure-strategy equilibrium.
Proof. By Lemma 3, if the game G = (X, v) satisfies the interchangeability condition, then the
induced preference relation > in the corresponding decision problem Dg = (X, >) is acyclic.
Applying Lemma 2, it follows that the game G = (X, v) possesses at least one pure-strategy
equilibrium. While the notion of quasiconcavity introduced by Duersch et al. (2012a) leverages the
symmetry of the game, it does not fully utilize the zero-sum property of the payoff structure. To
address this limitation and more effectively exploit the zero-sum nature, we now introduce the
concept of weak quasiconcavity.

Definition 9 Weakly Quasiconcave Games: A symmetric two-player zero-sum game (X, v) is
said to be weakly quasiconcave if there exists a total order <on X such that, for every
X,X,X,y €X with

X <x< x”,

the following condition holds:

sgn (v(x, y)) = min {sgn(v(x,y)), sgn (v(x', y)},
where sgn (+) denotes the sign function.

As we will show, weak quasiconcavity not only generalizes the notion of quasiconcavity (see
Proposition 3) but also provides a sufficient condition for the existence of pure-strategy equilibria
(Theorem 2). To establish these results, we first present a lemma that connects weakly
quasiconcave games with the acyclicity of their associated decision problems. This link forms a
crucial step in demonstrating that weak quasiconcavity guarantees the existence of a pure
equilibrium [27].

Lemma 4 Let (X, v) be a symmetric two-player zero-sum game. If the game (X, v) is weakly
quasiconcave, then its associated preference relation in the equivalent decision problem is
acyclic. Consequently, the game (X, v) itself is acyclic.

Proof. First, observe that the games (X, v) and (X,sgn(v)) share the same equivalent decision
problem (X, >), since for any X,y € X,

v(x,y) > 0 if and only if sgn(v(x, y)) > 0.

Now, suppose, for the sake of contradiction, that > is not acyclic. Cyclicity of > implies the
existence of a finite subset X € X that does not admit a maximal element. By Lemma 1, the

corresponding symmetric two-player zero-sum game (X ,sgn(v™)) therefore has no pure-strategy
equilibrium.

According to Theorem 7 in Duersch et al. (2012a), this absence of a pure equilibrium implies

that the game (X ,sgn(v™)) is not quasiconcave. Consequently, it is impossible to define a total

28

BHARAT PUBLICATION


https://bharatpublication.com/ijtse/

International Journal of Technology, Science and Engineering ISSN: 2457-1016

Vol. 1, Issue II, Jan-Mar, 2018 https://bharatpublication.com/ijtse/

order on X that renders the game quasiconcave. Extending this argument, it follows that no total
order on the larger set X can make (X,sgn(v))quasiconcave.

Therefore, if (X, v) is weakly quasiconcave, its equivalent decision problem must be acyclic.
This completes the proof [28].

Theorem 2 Let (X, v) be a symmetric two-player zero-sum game. If (X, v) is weakly
quasiconcave, then the game admits at least one pure-strategy equilibrium.

Proof. By Lemma 4, if the game G = (X, v) is weakly quasiconcave, then the associated
preference relation > in its equivalent decision problem Dg = (X, =) is acyclic. Applying Lemma
2, acyclicity ensures the existence of a maximal element, which directly corresponds to a pure-
strategy equilibrium in the original game G.

RELATIONS BETWEEN SUFFICIENT CONDITIONS

In this section, we first examine the relationships among the well-established sufficient
conditions for the existence of pure equilibria in symmetric two-player zero-sum games. Next,
we explore the interconnections between the newly introduced conditions, such as
interchangeability and weak quasiconcavity. Finally, we present results that formally establish
links between the classical and new conditions, highlighting how the novel conditions extend or
refine existing frameworks.

Concluding Remarks: This study makes several contributions to the theory of symmetric zero-
sum games by investigating sufficient conditions for the existence of pure-strategy equilibria.
First, we introduced two new sufficient conditions: interchangeability and a weakened
form of quasiconcavity, extending the concept originally proposed by Duersch et al. (2012a).
Second, we analyzed the relationships between classical and newly introduced conditions,
employing a framework grounded in the preference relations naturally induced by symmetric
Zero-sum games.

For future research, it would be worthwhile to explore whether the framework and conditions
developed here can be generalized to broader classes of games, including asymmetric zero-sum
games and symmetric non-zero-sum games, potentially providing further insights into the
existence and structure of equilibria in more complex strategic settings.
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